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Abstract. This paper shows how the literature on complexity is related to complex systems and to 
systems engineering. A framework for types of complexity is proposed that includes three types of 
structural complexity (size, connectivity, and architecture), two types of dynamic complexity (short-term 
and long-term), and one additional type, socio-political complexity. These types cover most of the 
characteristics of complexity mentioned in the reviewed literature; omissions are noted.  

It would be advantageous to identify specific measures of complexity so that the complexity of systems or 
development programs could be compared and tracked, and risks could be identified and mitigated. To 
this end an overview of systems engineering measurement is provided, followed by a discussion of how 
complexity types might be able to be measured. At this point, however, a composite measurement of the 
six types of complexity is not recommended.  

1. Introduction 
Complexity is blamed for problems in system development ranging from computer programming 

failures (McCabe 1976) to acquisition program failure (Murdock 2008; United States Government 
Accountability Office 2008). Systems engineering complexity measurement, which could in theory lead 
to an understanding and possibly control of complexity, is problematic: “Even students and scholars in 
complexity...use the word ‘complexity’ to describe different ideas and perceptions.” (Suh 2005)  

Sometimes complexity implies a large number of components. More often the problem lies in how 
those components are interconnected, because interconnections, and the architectures derived from them, 
can create emergent patterns and unintended consequences. Sometimes the system itself may be well-
understood, but the problem of developing the system is complex because of the number of contractors or 
number of tasks in a development schedule, dependencies among these nodes, or socio-political aspects of 
the development effort. Often interconnectedness of tasks in a development schedule can create a 
cascading effect if one task runs into problems, the same way a crack can propagate through a material. 

To identify useful and robust measures of complexity, one must first clarify what complexity 
consists of and what its effects are.  To that end, this paper proposes a typology of complexity, consisting 
of six main subtypes. Thoughts about how these types could be measured are included at the end. 

2. Systems engineering and complex systems science 

Historical systems engineering 
In the early 20th

                                                 
1 Author to whom correspondence should be addressed 

 century, large and unprecedented technological systems of many kinds were created. 
Military aircraft in World War 1 followed the first airplane flight in by less than twenty years. An unpre-
cedented alliance of European cryptographers broke the code on the German Enigma machine long before 
World War II started. (Schwager 1998) Should these technological developments be called engineering 
efforts, or are they perhaps early systems engineering efforts?  
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Hughes (1998) argues that systems engineering as a profession developed after World War II, with 
the specific purpose of managing complexity on large projects using new technology. From these projects 
evolved the field referred to as systems engineering, a new field combining systems analysis, operations 
research, management science, and systems integration. The field was documented in a textbook by Hall 
(1962), followed by dozens of other textbooks by the 1990s.  

Even so, Friedman (1994) lamented: “In the future, we will either manage complexity, or complexity 
will manage us, and we will be overwhelmed by ineffective, costly and late systems which are 
unbalanced, incomplete, incoherent, irrational, divergent, undocumented, polluting, and generate 
unnecessary risk at every turn.” When this was published, there was much disagreement as to the scope of 
systems engineering, its principles or even the name (is it “system” or “systems” engineering?).  

Within the next five to ten years, systems engineering standards and capability models (Sheard and 
Lake 1998) were written,  released, harmonized with other standards and models, and re-released.. The 
vocabulary defined in such documents has become well-understood by systems engineers, software 
engineers, and to a lesser extent, project managers. Several versions of the International Council on 
Systems Engineering (INCOSE) Systems Engineering Handbook (Haskins, Forsberg et al. 2008) have 
been released as well. The most recent, rationalized to an international systems engineering standard, 
serves as the basis for a systems engineering certification program. Currently many aspects of the practice 
of systems engineering have become standardized across the industry.  

This is not to suggest, however, that this practice is based on an overarching and complete systems 
engineering theory. For one thing, standardized practices accumulated from the practical and industrial 
side, with programs reusing that which worked on previous programs. Industrial practitioners have also 
dominated INCOSE symposia, to the extent that researchers found a need for a focused “Academic 
Forum.” Programmatically, incorporation of theoretically-suggested improvements has taken a back seat 
compared to reducing cost and complying with process standards, particularly since capability models 
became required in the mid-1990s. Those practicing systems engineers who have taken on larger 
workloads with the consolidation of the defense and aerospace industry have little time to read up on 
recent research. And finally, the dominance of software in new development has led some managers to 
turn to software engineers to do the systems engineering, even those who have little to no knowledge of 
systems engineering history or best practices. Thus theory has found too little traction in improving 
systems engineering practice. 

Complex systems theory and systems engineering 
Historically, systems engineering theory has consolidated wisdom from a variety of fields. Figure 1 

shows a very sketchy view of this history; a wall-sized poster can also be drawn.(Mdd 2006) Systems 
theory beginning as early as cybernetics (See Ashby (1956) for a good history), general system theory 
(Bertalanffy 1969), and systems thinking, continuing into the 1970s (Checkland 1993), and beyond 
(Weinberg 2001). System dynamics, in the form of structured analysis and business analysis, has been 
used in systems engineering for several decades.(LaPlante 2004) These have been applied to the evolving 
fields of software engineering and systems process discipline. 

Theory derived from more recent complex systems sciences has not been explicitly incorporated into 
systems engineering standards or into most practice. While studies of fractals (Addison 1997), chaos 
(Gleick 1987) and complexity (Waldrop 1992) were enabled by widespread availability of digital 
computers beginning in the 1970s, topics such as the numerical modeling of complex adaptive systems 
(Miller and Page 2007) and theoretical fields such as nonlinear dynamics and networks have been folded 
into systems engineering only much more recently. Since 2000, a recommended new kind of systems 
engineering has been identified. This field is variously called Engineering Systems (Moses 2004), 
Enterprise Systems Engineering (White 2006) and Complex Systems Engineering (Sheard and Mostashari 
2009). “Systems of Systems engineering” is closely related (Office of the Undersecretary of Defense 
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2008), although that particular guide intentionally only discusses extensions to current systems 
engineering practice rather than anything totally new. 
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Figure 1. History of systems fields 

This new field is still expressed in terms of broad descriptions of recommended improvements, 
rather than a filled-in body of knowledge. “Systems engineering” and “Complex systems” are both very 
broad fields. In addition, the intersection of the two fields is not smooth but patchy: a particular principle 
connects one small systems engineering task to one specific kind of complex analysis, under specific 
conditions. The problem is exacerbated by the fact that today’s standard systems engineering, centered 
around system life cycles and standard processes, is but a subset of the early endeavors labeled “systems 
engineering.” The broader type documented, for example, in (Hall 1962) addressed not only process but 
also systems engineering patterns; environmental research; economic, psychological, and “casuistic” 
theories of value; statistical decision making; and even “psychological aspects of synthesis.” 

Today’s systems engineering challenges 
Many of today’s systems engineering challenges are not technical problems such as those addressed 

in engineering education. Murdock (2008) lays out the causes of “DoD’s Systemic Acquisition Failures.” 
Acquisition problems include decisions of what to acquire, funding issues, requirements creep, loss of 
internal technical competency, and incentive structures; in summary: “The defense acquisition system is 
incredibly complex, process-centric and risk-averse.” In MITRE’s Enterprise Systems Engineering 
Profiler tool (Stevens 2006), which quantifies program complexity, six of the eight octants have nothing 
to do with the technical system; rather they deal with stakeholders, scope, and acquisition context. The 
DoD’s recent Guide to Systems Engineering of Systems of Systems (Office of the Undersecretary of 
Defense 2008), which shows adaptations of standard systems engineering as it applies to larger and more 
complex efforts, notes challenges such as “Coopetition” (development teams of multiple contractors who 
also compete against each other), spatially distributed development, and compliance with laws of multiple 
nations.  These problems fall outside the standard scope of engineering; yet if they are not addressed, 
technical solutions will fail. 



 4 

Most of the specifically technical challenges have been the focus of improved technology efforts for 
some time. These include a preponderance of increasingly intricate software, interoperability of systems 
that were originally designed to be independent, and evolving systems-of-systems whose inner workings 
are continuously exchanged. Contributing to complexity of this improved technology is more compact 
hardware (which is more tightly integrated) and the fact that today’s software must be protected from 
unknown and increasingly sophisticated threats.  

3. Defining complexity in the context of systems engineering 
The goal of systems engineering is to create systems that work together and perform their intended 

function well in the operational environment. Before the last few decades, engineered systems were 
generally stand-alone systems with a single purpose that was usually limited in time and space. Assuming 
there was a feasible design in the first place, control of the development process usually sufficed to ensure 
the systems were built.  

Consequences of recent complexity increases include: (Ameri, Summers et al. 2008) 
• Increases in product life cycle costs (costly) 
• Difficulty of getting engineering changes made (unmaintainable)  
• Difficulty in servicing, leading to many failure modes (unrepairable) 
• A complex supply chain, resulting in management and logistical problems (takes so long to 

build that it is practically obsolete upon delivery) 
• The need for a complex, and therefore costly, design process  

Figure 2 shows these as some of the effects of complexity on the right. Characteristics that create 
complexity are shown on the left. 
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Figure 2. Contributors to and Effects of Complexity 

Establishing a practice of improved systems engineering for the future will require addressing 
complexity explicitly. Systems engineers need to know “when a systems problem, and/or its solution, is 
complex; how complex it is (in relation to other systems, as a minimum); [and] how to manage the 
complexity to permit us to answer...questions such as: ‘When have we done enough?  Is our confidence at 
an acceptable level?’ ”(Calvano and John 2004) Systems engineers will need to understand what 
complexity is and how to measure it. Summarized definitions from the literature are therefore provided in 
this section. The literature reviewed came both from the complex systems sciences and from systems 
engineering. 
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Things and Relationships 
Systems engineering generally talks about “elements” and “interfaces”. This dual concept of “things” 

and “relationships among the things” is common across many fields, although the vocabulary varies from 
field to field, as suggested by the terms in Table 1. No difference has been found between describing a 
system as consisting of “nodes” and “links” and describing it as having “entities” and “relationships,” so 
for the purpose of this paper, all the terms in a column of Table 1 are considered equivalent. 

Table 1. Equivalent Things and Relationships 
Thing Relationship Source Field 

Elements, components, 
systems, or subsystems 

Interfaces Systems engineering 

Stocks Flows Systems dynamics 
Nodes Links Network science 

Vertices Edges Cyclomatic complexity 
Modules Messages Software development 
Entities Relationships Systems analysis 
People Connections Social networking 
Tasks Dependencies Project management, PERT 

Process activities Sequence of 
activities 

Process engineering 

Literature Overview and discussion: Complexity types 
Sheard and Mostashari (2009) discuss the literature in detail, showing how the concepts addressed by 

Sussman (2000), Bolton (2007), Moses (2002; 2004), Bar-Yam (1997), Miller and Page (2007), Rouse 
(2007), Calvano and John (2004), Holland (1995), and Mostashari and Sussman (2009) correspond to the 
framework here. It is shown that the six types and subtypes of complexity (Table 2) adequately address 
most of the types in the literature, given that artifact and development process complexities have some 
differences.  

The exception (those concepts from literature that are not well addressed by the typology) can be 
summarized as follows: 

• Theoretical and mathematical complexity, as opposed to experiential and tangible complexity 
• Causes and effects of various types of nonlinearity and emergence 
• Environmental complexity, and a full set of subtypes of sociopolitical complexity (nested and 

evaluative subtypes are mentioned above) 
• Risk, concerns and worries  
• Uncertainty and measurement noise.   

The concepts in the first bullet are only excluded from the typology to the extent that they are so 
theoretical as to be not usable on real programs (the types structural:size and structural:connectivity do 
address much in these concepts). Causes and effects of nonlinearity and emergence are interesting and 
possibly useful, but are not related to how complexity is measured, which is the focus of this work. Socio-
political complexity deserves its own treatment, most likely in collaboration with sociologists. For now it 
is recognized that this type is poorly defined. Risks, concerns, worries, and uncertainty are more effects 
than types of complexity. Measurement noise is addressed briefly below. 
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4. Framework of types of complexity  
Figure 3 shows how the various types of complexity interrelate. Green items (dashed border) are 

items whose complexity is at issue: systems (artifacts), the processes used to develop them, and the 
environment. Both systems and development processes exhibit both structural and dynamic complexity. 
Structural complexity (orange, dotted border) has three subtypes, described in more detail below Table 2. 
Dynamic complexity (pink, solid border) is split into short- and long-term. Socio-political complexity 
(blue, dot-dash border) applies primarily to the environment and development processes rather than to 
things, although this also plays a role in the function of the system itself, particularly in systems-of-
systems.   
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Figure 3. Relationship of complexity types 

 
 Table 2 lists these six types of complexity, including examples, why the factor contributes to 

complexity, and what kinds of problems can occur if a system (or, with a dash preceding it, a 
development process) has such complexity. Each type of complexity (row in the table) is discussed in 
more detail below the table. 

Table 2. Framework of Types of Complexity 
Type Subtype Example  Why complex?  Problem if have it 
1  
Structural 
complexity 

Size  (# elements, # 
instances, # types of 
elements) 
-of development 
process  

People, groups, units, 
computer nodes 

-SE tasks 

Many items are harder to 
track. (Some consider 
this “complicated” not 
complex) 

Long list of elements, 
some won’t be on 
time 
- Costly to staff all 
tasks 
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Type Subtype Example  Why complex?  Problem if have it 
2  
Structural 
complexity 

Connectivity (# 
connections, types, 
strength of 
connections) 
-of development 
process 

Number or density of 
connections, varieties 
(data/control/physical),  
(strong/medium/weak/ 
none) 
“Static emergence” 
-dependency links 

Everything connects to 
everything else. Diffi-
culty decomposing and 
isolating causes/effects.  
Determines network 
connectivity, path length, 
feedback loops 

Emergent properties 
Cascading failures. 
Difficult to observe, 
describe, control, 
predict breakage  
-Program may not 
converge 

3  
Structural 
complexity  

Architecture 
(Patterns, chunk-
iness of connections, 
inhomogeneity, 
boundaries) 

Trees, layers, networks, 
teams 
Chunks, fragmentation, 
“non-holonomic 
constraints” 

Chunks of order have 
different properties from 
other chunks or from the 
stew of complexity  

Different patterns 
have different 
failures or strengths. 
Averaging across 
different types gives 
incorrect conclusions 

4  
Dynamic 
complexity 

Short term (sudden 
rapid change in 
system behavior) 
-development 
system behavior 

Homeostasis, Time 
patterns, Feedback. 
-Execution of develop-
ment system (building 
of the product) is inher-
ently dynamic  

Difficult to predict, con-
trol, understand, commu-
nicate. Rapid problem 
exacerbation, oscillation 
due to time delays. 
-tasks may be out of 
sequence 

Things can change 
suddenly and 
unpredictably. Hard 
to estimate. Typical 
linear and gaussian-
based assumptions 
fail. 

5  
Dynamic 
complexity 

Long term (changes 
in # and types of 
things and 
relationships) 

Origin of complex sys-
tems, growth, evolution 
to a new system, self-
organization, adapta-
tion, learning, co-evolu-
tion causing changes in 
fitness landscape. 

Evolution is long-term 
emergence. Almost 
impossible to predict 
how a system will 
evolve. Learning 
changes short-term and 
long-term behavior. 

Adaptation is hard to 
predict. Difficult to 
engineer system 
qualities (“ilities”) at 
end of life because 
both system and 
context change 

6  
Socio-
political 
complexity 

Social and Political  
(Human cognitive 
limitations , multiple 
stakeholders, global 
context, environ-
mental sustain-
ability, economics) 
-“Coopetition,” 
supplier chain depth, 
distributed 
development 

Objectives multiple, 
soft, value-laden. 
Multiple perspectives, 
multiple approvals 
required. Pluralism. 
Sociological aspects of 
teams and 
organizations,  
Diverse operational 
environments, diffuse 
boundaries 

Individuals ambivalent 
and change their desires 
over time. Team 
dynamics and 
organizational dynamics 
can scuttle technical 
concerns. Politics can 
determine whether a 
system is built at all. 
Policies are resisted. 

Goals change, 
acceptability of 
developed system 
changes, system 
requirements change, 
funding is cut, system 
may not be 
developable in time 
required. 

 

Row 1 (Structural complexity: Size) groups all considerations about number of elements (nodes). 
How many nodes are there? How many types of nodes are there? How many instances total? The more 
nodes there are, the greater the amount of resources required to understand and manage a system, but 
greater numbers do not in themselves require a qualitatively different kind of management. Some 
consider the number of types of elements to be the only really complex part of Type 1, while others 
(Stevens 2009) consider this “diversity” rather than true complexity; in any case, no discussion of 
complexity can omit size altogether.  

Row 2 (Structural complexity: Connectivity) includes all considerations having to do with number 
or types of connections (links, relationships, etc.). Note that number and density are essentially the same 
quantity, density being just the number divided by the maximum possible number of connections (which 
is (n)(n-1)/2 for bidirectional connections, considering only connections between two elements). Types of 
connections differ from representation to representation (Ameri, Summers et al. 2008) and include (for 
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example) signal, energy, and material in a “function structure” representation, and up to eight types for a 
“parametric associativity graph.” 

Combined with number of nodes (Structural complexity: Size), connectivity determines many 
network properties, including average network path length, degree centrality, group cohesion, and 
robustness to failure (Cross and Parker 2004). McCabe (1976) showed that the number of vertices (nodes) 
and links (edges) was sufficient to calculate the number of fundamental loops in a single software 
program.  

When the issue is complexity of the development process, nodes are the tasks and connections are 
dependency links among them, including feedback that causes revisiting of a previous task due to outputs 
of a current task. If the connectivity is high enough, so much feedback can happen that the program may 
not converge at all (Mihm and Loch 2006). 

Generally, emergent properties arise when connectivity gets high. Therefore emergence that is not 
explicitly time-dependent is included in this type. Dense networks (high connectivity) also make a system 
hard to decompose. 

Connectivity may also include considerations of varying strengths of connections, whether simple 
bins of “weak, medium, or strong” or continuous variations in neuron-neuron strength as the basis for 
memory in artificial neural networks (Stergiou and Siganos 1996), for example. 

Row 3 (Structural complexity: Architecture) was necessary to deal with issues such as 
architectural patterns (tree, layers, teams, etc.) and concepts of boundaries and “chunkiness” (e.g. islands 
of order within a complex or chaotic background). These imply a certain level of connectivity, but the 
concept is different because connectivity refers to a total or average number, while architecture 
specifically looks at inhomogeneity. This type of complexity arises from things not being the same across 
their expanse, including the effect of distinct spatial areas on populations that grow in an environment  
(Sayama, Kaufman et al. 2000) and boundary issues. “Texture” is a slightly broader term than “chunki-
ness” and may apply if the chunks get small enough. 

Row 4 (Dynamic complexity: short term) is one of two types of dynamic complexity. Dynamics 
occur at all time scales, but in general there are two different kinds of effects. One effect is seen at an 
operational time scale, best exemplified by the concern that in high complexity systems, negative events 
may grow quickly, surprising operators and requiring emergency measures. Whether considered a 
nonlinear or “butterfly” effect, or analyzed in terms of feedback, homeostasis, and Gaussian distribution 
“outliers,” these effects are difficult to understand, predict, control, or prevent.   

It should be noted that development processes are inherently dynamic (in contrast to artifacts, which 
have at least some static properties). A development process by nature implies beginning with early steps, 
completing them, and over time progressing through the remaining steps.  

Row 5 (Dynamic complexity: long term) addresses the longer time scale, the time scale over which 
systems evolve as the agents adapt, or perhaps die and are replaced by another generation (as a minimum; 
the time scale can also be much longer than a single generation). Complexity arising from the growth of 
complex systems, self-organization, or learning is considered long-term, as are many concepts related to 
the fitness landscape changing (although that can also occur on an operational time scale, particularly in 
war-like situations). 

Row 6 (Socio-political complexity) is acknowledged as covering too much. Into this “type” has 
been squeezed anything having to do with humans, from cognitive limitations that prevent designers from 
being able to consider much more than 7 plus or minus 2 items at once, to sociological phenomena such 
as fads and marketing, to fields of economics, environmental sustainability, and politics. These are 
grouped together primarily because most engineers have neither education nor aptitude to deal with them. 
Ideally, systems engineers can bring specialists in these fields onto programs at appropriate points, but 
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this ideal is not often enacted. This type has not been divided into sub-types, partly because differences 
among these fields are not evident to many engineers.  

Socio-political complexity includes concepts of multiple stakeholders, viewpoints, and views; of 
soft, value-laden, and conflicting objectives; of pluralism (the social counterpart to “chunkiness”); 
management science and principles of teams; and competition among suppliers in the contractor 
marketplace. This latter mostly applies when considering the complexity of the development process 
rather than that of a product or artifact, but in fact this whole category is more about process than 
artifacts.  

5. What is systems engineering measurement? 
Systems engineering measurement was performed long before the discipline of systems engineering 

coalesced, as documented, for example, in standards and capability models in the 1990s (Sheard 2001). 
Individual programs measured progress using earned value and other project management techniques 
(Rosenau 1981) beginning in the 1960s or 1970s. From the earliest time in the modern era of systems 
engineering, programs tracked key technical parameters, a skill crystallized into Technical Performance 
Measurement, which was described in a 1974 Military Standard (U.S. Department of Defense 1974).  

Improved and more broadly-accepted systems engineering measurement information came from four 
different directions, as follows:  

• INCOSE, and in particular its Measurement working group, published a technical measurement 
guidebook (Roedler and Jones 2005) that refined and expanded an earlier Measurement primer 
(Measurement Working Group 1998).   

• Practical Software Measurement (McGarry 2002) began as a software-only collection of common 
program issues and suggestions for their measurement. PSM’s well-connected authors brought 
the same ideas into the CMMI (Chrissis, Konrad et al. 2003) and into international measurement 
standards (ISO/IEC 2007). Beginning in 2004, PSM explicitly added systems engineering. PSM 
has a well-developed method, process, lexicon, set of templates, examples, and recommended 
measures.  

• USC’s Center for Software and Systems Engineering developed first the CoCoMo (Constructive 
Cost Model) cost estimation model for software (USC Center for Software and Systems 
Engineering 2002) and then in 2006, a similar model for estimation of systems properties called 
COSYSMO (Valerdi 2006).  These provide an industry-wide set of cost-drivers, and a baseline 
calculation capability that can be tailored to a particular organization.  

• Leading Indicators. A 2007 report called Systems Engineering Leading Indicators (Roedler and 
Rhodes 2007) involved cooperation among most of the groups represented above. A complexity 
measure was one of the most requested additions for the 2009 update presently in work, but will 
probably not appear due to inability to capture all the different requested ideas in one measure 
(Sheard and Mostashari 2009). 

6. Complexity measurement related to systems engineering 
None of the INCOSE systems engineering measurement documentation addresses complexity. Sosa, 

Browning and Mihm (2007) have investigated software systems complexity and its relationship to 
architecture. While very promising, the concepts only apply to actual coded software, are not applicable 
to larger systems, and are not available early enough in the program to be considered “leading.” PSM 
includes “cyclomatic complexity” (McCabe 1976). While this has been important in the software com-
munity, this does not translate easily to systems engineering. Only COSYSMO from USC addresses 
complexity, via the driver “architecture complexity”, but this is estimated by experts, not calculated. 
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Architecture Complexity: The relative difficulty of determining and managing the system 
architecture in terms of IP platforms, standards, components (COTS/GOTS/NDI/new), connec-
tors (protocols), and constraints. This includes systems analysis, tradeoff analysis, modeling, 
simulation, case studies, etc. (Boehm, Riefer et al. 2003)  

At this time there is not a standard, frequently-used measure of complexity that is applied to systems 
engineering, and there is significant interest in such a measure (Sheard and Mostashari 2009; Roedler and 
Rhodes 2010).  

The goal of systems engineering complexity measurement would be first, to be able to track changes 
in the complexity of a given system over time, and potentially second, to be able to compare the 
complexity of two different systems. Table 3 shows the types and sub-types of complexity from Table 2, 
followed by potential measures that could be used to evaluate the complexity of an artifact or 
development process according to that type of complexity. These basic measures could then be combined 
into a complexity indicator as shown in Roedler and Rhodes (2007) for other systems engineering 
measures. These are preliminary ideas that need significant study before implementing.  

Table 3. Possible Measures of Various Types of Complexity 
Type Subtype Possible measures 
1 Structural  
complexity 

Size  (# elements, instances, # 
types elements) 
-of development process  

# items (instances) 
# types of unique items 
# development tasks 

2 Structural  
complexity 

Connectivity (# connections, 
types, strengths),  
-of development process 

# connections, density of connections (binned by 
strength?) 
# loops or threads per McCabe software complexity.  

3 Structural  
complexity  

Architecture (Patterns, 
chunkiness of connections, 
boundaries) 

Measures similar to texture measures, such as size 
distribution function (Moskowitz and Jacobs 1975); 
(Kaye, Junkala et al. 1998) or Boundary fractal dimension 
(Wettimuny and Penumadu 2003) 

4 Dynamic 
complexity 

Short term (Nonlinearity, 
dynamic emergence, sudden rapid 
change in system behavior—
butterfly effect) 
-development system behavior 

In a system dynamics or agent-based model, predict 
characteristics of changes such as frequency and size (or 
consequence), and derive “change exposure” measures? 
- # Paths, deviations from waterfall, dependencies? 
PERT C measures 

5 Dynamic 
complexity 

Long term (changes in # and 
types of things and relationships) 

ESE Profiler tool results 
Possibly: measures of resilience 

6 Socio-
political 
complexity 

Social and Political (Cognitive 
limits, multiple stakeholders, 
global context, environmental 
sustainability, economics) 
-“Coop-etition,” supplier chain 
depth, distributed development 

ESE Profiler, sociological measures of group and 
organizational coherence, team measures, political 
measures such as size of constituency.  
Scale of effort in terms of number of users and user types. 

 
These measures are all hypothetical, and very few relate to the practical measures documented in 

(PSM 2007). Many questions would have to be resolved, including those brought up by Ameri, Summers 
et al. (2008) such as whether the measure relates to the model of the product (the product representation) 
or to the product itself.  Clearly models are easier to use theoretically, but if different models of the same 
product would give different measures, it is not clear that such measures would be useful to systems 
engineers or managers. 

The Systems Engineering Leading Indicators revision project has been asked to propose a practical 
Complexity indicator for systems and/or programs (Roedler and Rhodes 2010). The requests were 
grouped together because they all mentioned “complexity,” but some ask about size of the product while 
others refer to number of teammates or the risk of not meeting the development schedule.  
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Because of this lack of clarity it is not prudent at this time to recommend a composite measure that 
rolls up all six of these types into one number. It is unknown which of the six types is most likely to lead 
to problems, in general or for any specific system. Different systems will likely have different mixes of 
complexity, and a single number that was 95% social complexity might have very different implications 
to a program than a single number that was 95% short-term dynamic complexity. There would also be 
little credibility to any algorithm that would suggest how to combine the six types. Most likely the initial 
work on these complexity measurements will need to capture aspects of all six types and study 
correlations to see what aspects do lead to problems and what aspects are more benign. 

However, once a candidate measure is proposed, it will likely be well-tested in the field, since there 
is great interest in being able to determine the level of complexity on a program. This is a fertile area for 
research, which is expected to provide data about the difficulty of making theoretical work usable on real 
programs. 

7. Conclusion 
This paper has reviewed the literature on complexity, as related to complex systems and to systems 

engineering. Table 2 proposes a framework of complexity types that includes three types of structural 
complexity (size, connectivity, and architecture), two types of dynamic complexity (short-term and long-
term), and socio-political complexity. For each of these types, the complexity of the development process 
is discussed separately from the complexity of artifacts, if appropriate. The paper shows that these six 
types address nearly all of the types of complexity mentioned in the reviewed literature.  

The recent history of systems engineering measurement features a growing body of work starting 
with a definition of the measurement process, growing to an industry-wide database of cost drivers, and 
including, in the more recent documents, suggested leading indicators and measurement and indicator 
templates. To continue improving measurement of systems engineering toward a solid complexity 
measure, a number of potential measurements are discussed that relate to the six types of complexity. 
Because such theoretically based measurements are so different from the practical measures in use across 
the industry, it is premature at this time to define a composite complexity measurement.  

Future work is proposed that will fill in holes in the understanding and definition of various aspects 
of complexity as they relate to systems engineering.   

8. References 
Addison, P. S. (1997). Fractals and chaos: an illustrated course
Ameri, F., J. D. Summers, et al. (2008). "Engineering design complexity: an investigation of methods and 

measures." 

. Philadelphia, PA, Institute of Physics Publishing. 

Res Eng. Design 
Ashby, W. R. (1956). 

19: 161-170. 
Introduction to Cybernetics 

Bar-Yam, Y. (1997). 
Chapman & Hall. 

Dynamics of Complex Systems
Bertalanffy, L. v. (1969). 

. Cambridge, Massachusetts, Westview Press. 
General system theory; foundations, development, applications

Boehm, B. W., D. J. Riefer, et al. (2003). COSYSMO, A Systems Engineering Cost Model. 
. New York,, G. Braziller. 

International Council 
on Systems Engineering

Bolton, D. P. W. (2007). Some Thoughts on Systems Engineering, Engineering Systems & Complexity 
. Crystal City, Virginia, INCOSE. 

Symposium on Complex Systems Engineering
Calvano, C. N. and P. John (2004). "Systems engineering in an age of complexity." 

. Santa Monica CA. 
Syst. Eng. 

Checkland, P. (1993). 
7(1): 25-34. 

Systems Thinking, Systems Practice
Chrissis, M. B., M. Konrad, et al. (2003). 

. Chichester, West Sussex, England, John Wiley & Sons. 
CMMI: Guidelines for Process Integration and Product Improvement

Cross, R. and A. Parker (2004). 

. 
Boston, Addison-Wesley. 

The Hidden Power of Social Networks: Understanding how work really gets done 
in organizations

Friedman, G. J. (1994). "Systems Engineering's Crucial Juncture." 
. Boston, Massachusetts, Harvard Business School Press. 

The Journal of the National Council on Systems 
Engineering

Gleick, J. (1987). 
 1(1): 1-6. 
Chaos: Making a New Science. New York, Penguin Books. 



 12 

Hall, A. D. (1962). A Methodology for Systems Engineering
Haskins, C., K. Forsberg, et al., Eds. (2008). 

, Van Nostrand Reinhold. 
Systems Engineering Handbook: A Guide for System Life Cycle 

Processes and Activities, v 3.1
Holland, J. H. (1995). 

, International Council on Systems Engineering  
Hidden Order: How Adaptation Builds Complexity

Hughes, T. P. (1998). 

. Cambridge, Massachusetts, Perseus 
Books. 

Rescuing Prometheus
ISO/IEC (2007). ISO/IEC 15939:2008E  Systems and software engineering -- Measurement process. Switzerland. 

. New York, Pantheon Books. 

Kaye, B. H., J. Junkala, et al. (1998). "Domain Plotting as a Technique for Summarizing Fineparticle Shape, 
Texture and Size Information." Particle and Particle Systems Characterization

LaPlante, P. A. (2004). 
 15(4): 180-190. 

Real-time systems design and analysis
McCabe, T. J. (1976). "A Complexity Measure." 

. Hoboken NJ, IEEE Press Wiley-Interscience. 
IEEE Transactions on Software Engineering 

McGarry, J. (2002). 
SE-2(4): 308-320. 

Practical software measurement: objective information for decision makers

Mdd (2006). "User:MDD/History of systems theory." Retrieved April 1, 2010, 2010, from 
http://en.wikipedia.org/wiki/User:Mdd/History_of_systems_theory. 

. Boston, MA, 
Addison-Wesley. 

Measurement Working Group (1998). Systems Engineering Measurement Primer. Seattle WA, INCOSE, the 
International Council on Systems Engineering. 

Mihm, J. and C. H. Loch (2006). Spiraling out of control: problem-solving dynamics in complex distributed 
engineering projects. Complex Engineered Systems: Science Meets Technology

Miller, J. H. and S. E. Page (2007). 

. D. Braha, A. A. Minai and Y. 
Bar-Yam. Cambridge, Massachusetts, Springer: 384. 

Complex adaptive systems: An introduction to computational models of social 
life

Moses, J. (2002). The Anatomy of Large-Scale Systems. 
. Princeton, NJ, Princeton University Press. 

ESD Internal Symposium

Moses, J. (2004). Foundational Issues in Engineering Systems: A Framing Paper. 

, Massachusetts Institute of 
Technology Engineering Systems Division. 

Engineering Systems Monograph

Moskowitz, H. R. and B. E. Jacobs (1975). "The texture profile: its foundation and outlook." 

, 
MIT esd. 

J. Texture Stud.

Mostashari, A. and J. M. Sussman (2009). "A Framework for Analysis, Design, and Management of Complex, 
Large-Scale, Interconnected, Open Sociotechnological Systems." 

 1(6): 
157. 

International Journal for Decision Support 
Systems and Technologies

Murdock, C. A. (2008). Assessing DOD's Systemic Acquisition Failures. Washington, DC., Center for Strategic & 
International Studies: 8. 

 1(2): 52-68. 

Office of the Undersecretary of Defense (2008). Systems Engineering Guide for Systems of Systems  Version 1.0. 
Washington DC, Office of the Undersecretary of Defense (A,T and L), Systems and Software Engineering,. 

PSM (2007). Practical Software & Systems Measurement: Objective Information for Decision Makers
Roedler, G. J. and C. Jones (2005). Technical Measurement. INCOSE. Seattle, WA, INCOSE. INCOSE-TP-2003-

020-01. 

. 

Roedler, G. J. and D. H. Rhodes (2007). Systems Engineering Leading Indicators Guide. Seattle WA. 
Roedler, G. J. and D. H. Rhodes (2010). System Engineering Leading Indicators. Cambridge MA, Lean Aerospace 

Initiative. 
Rosenau, M. D. (1981). Successful project management: a step-by-step approach with practical examples

Rouse, W. B. (2007). Complex Engineered, Organizational & Natural Systems: Issues Underlying the Complexity 
of Systems and Fundamental Research Needed to Address These Issues. Washington DC, Engineering 
Directorate, National Science Foundation: 31. 

. Belmont, 
Calif., Lifetime Learning Publications. 

Sayama, H., L. Kaufman, et al. (2000). The role of spontaneous pattern formation in the creation and maintenance 
of biological diversity. International Conference on Complex Systems

Schwager, R. (1998). "History of the Enigma Machine." Retrieved April 1, 2010, 2010. 

. Y. Bar-Yam. Nashua New Hampshire, 
NECSI: 8. 

Sheard, S. A. (2001). Evolution of the frameworks quagmire. Computer
Sheard, S. A. and D. J. G. Lake (1998). Systems Engineering Standards and Models Compared. 

, IEEE. 34: 96-98. 
Eight Annual 

International Symposium of the International Council on Systems Engineering

Sheard, S. A. and A. Mostashari (2009). "A Complexity Typology for Systems Engineering." 

. Vancouver, British Columbia, 
Canada, INCOSE: 589-596. 

Syst. Eng. 
(Submitted). 



 13 

Sheard, S. A. and A. Mostashari (2009). "Principles of complex systems for systems engineering." Systems 
Engineering

Sosa, M. E., T. R. Browning, et al. (2007). Studying the Dynamics of the Architecture of Software Products. 
 12(4). 

ASME 
2007 International Design Engineering Technical Conferences

Stergiou, C. and D. Siganos (1996). "Neural Networks." 
. Las Vegas NV. 

Neural Engineering
Stevens, R. (2006). Engineering Enterprise Systems: Challenges and Prospects  McLean VA, The MITRE 

Corporation: 19. 

 4(11). 

Stevens, R. (2009). Origin of ESE profiler. S. A. Sheard. McLean VA. 
Suh, N. P. (2005). Complexity : theory and applications
Sussman, J. M. (2000). Ideas on Complexity in Systems--Twenty Views. M.I.T. 

. New York, Oxford University Press. 

U.S. Department of Defense (1974). MIL-STD-499A Engineering Management Washington DC, Department of 
Defense. 

United States Government Accountability Office (2008). Defense Acquisitions: Assessments of Selected Weapon 
Programs. G. A. Office. Washington DC. 

USC Center for Software and Systems Engineering (2002, 9/23/2002). "COCOMO, Constructive Cost Model." 
Retrieved May 9, 2009, from http://sunset.usc.edu/cse/pub/research/COCOMOII/cocomo_main.html. 

Valerdi, R. (2006, 12/6/2006). "Welcome to the home of COSYSMO." from http://valerdi.com/cosysmo/. 
Waldrop, M. M. (1992). Complexity: the emerging science at the edge of order and chaos

Weinberg, G. M. (2001). 

. New York, Simon & 
Schuster. 

An introduction to general systems thinking / Gerald M. Weinberg

Wettimuny, R. and D. Penumadu (2003). "Automated Digital Image Based Measurement of Boundary Fractal 
Dimension for Complex Nanoparticles." 

. New York, Dorset 
House. 

Particle & Particle Systems Characterization
White, B. E. (2006). 

 20(1): 18-24. 
On the Pursuit of Enterprise Systems Engineering Ideas

 

. Bedford, MA, The MITRE 
Corporation. 

 


	1. Introduction
	2. Systems engineering and complex systems science
	Historical systems engineering
	Complex systems theory and systems engineering
	Today’s systems engineering challenges

	3. Defining complexity in the context of systems engineering
	Things and Relationships
	Literature Overview and discussion: Complexity types

	4. Framework of types of complexity
	Short term (sudden rapid change in system behavior)
	Social and Political

	5. What is systems engineering measurement?
	6. Complexity measurement related to systems engineering
	Short term (Nonlinearity, dynamic emergence, sudden rapid change in system behavior—butterfly effect)
	Social and Political (Cognitive limits, multiple stakeholders, global context, environmental sustainability, economics)

	7. Conclusion
	8. References

	Prev: 
	Next: 
	Close: 
	First: 


