
 1

A Complexity Typology for Systems Engineering
Sarah A. Sheard,1

Stevens Institute of Technology
 and Dr. Ali Mostashari

Castle Point on Hudson
Hoboken NJ 07030

sheard@3MilSys.com / ali.mostashari@gmail.com

Abstract. This paper shows how the literature on complexity is related to complex systems and to
systems engineering. A framework for types of complexity is proposed that includes three types of
structural complexity (size, connectivity, and architecture), two types of dynamic complexity (short-term
and long-term), and one additional type, socio-political complexity. These types cover most of the
characteristics of complexity mentioned in the reviewed literature; omissions are noted.

It would be advantageous to identify specific measures of complexity so that the complexity of systems or
development programs could be compared and tracked, and risks could be identified and mitigated. To
this end an overview of systems engineering measurement is provided, followed by a discussion of how
complexity types might be able to be measured. At this point, however, a composite measurement of the
six types of complexity is not recommended.

1. Introduction
Complexity is blamed for problems in system development ranging from computer programming

failures (McCabe 1976) to acquisition program failure (Murdock 2008; United States Government
Accountability Office 2008). Systems engineering complexity measurement, which could in theory lead
to an understanding and possibly control of complexity, is problematic: “Even students and scholars in
complexity...use the word ‘complexity’ to describe different ideas and perceptions.” (Suh 2005)

Sometimes complexity implies a large number of components. More often the problem lies in how
those components are interconnected, because interconnections, and the architectures derived from them,
can create emergent patterns and unintended consequences. Sometimes the system itself may be well-
understood, but the problem of developing the system is complex because of the number of contractors or
number of tasks in a development schedule, dependencies among these nodes, or socio-political aspects of
the development effort. Often interconnectedness of tasks in a development schedule can create a
cascading effect if one task runs into problems, the same way a crack can propagate through a material.

To identify useful and robust measures of complexity, one must first clarify what complexity
consists of and what its effects are. To that end, this paper proposes a typology of complexity, consisting
of six main subtypes. Thoughts about how these types could be measured are included at the end.

2. Systems engineering and complex systems science

Historical systems engineering
In the early 20th

1 Author to whom correspondence should be addressed

 century, large and unprecedented technological systems of many kinds were created.
Military aircraft in World War 1 followed the first airplane flight in by less than twenty years. An unpre-
cedented alliance of European cryptographers broke the code on the German Enigma machine long before
World War II started. (Schwager 1998) Should these technological developments be called engineering
efforts, or are they perhaps early systems engineering efforts?

 2

Hughes (1998) argues that systems engineering as a profession developed after World War II, with
the specific purpose of managing complexity on large projects using new technology. From these projects
evolved the field referred to as systems engineering, a new field combining systems analysis, operations
research, management science, and systems integration. The field was documented in a textbook by Hall
(1962), followed by dozens of other textbooks by the 1990s.

Even so, Friedman (1994) lamented: “In the future, we will either manage complexity, or complexity
will manage us, and we will be overwhelmed by ineffective, costly and late systems which are
unbalanced, incomplete, incoherent, irrational, divergent, undocumented, polluting, and generate
unnecessary risk at every turn.” When this was published, there was much disagreement as to the scope of
systems engineering, its principles or even the name (is it “system” or “systems” engineering?).

Within the next five to ten years, systems engineering standards and capability models (Sheard and
Lake 1998) were written, released, harmonized with other standards and models, and re-released.. The
vocabulary defined in such documents has become well-understood by systems engineers, software
engineers, and to a lesser extent, project managers. Several versions of the International Council on
Systems Engineering (INCOSE) Systems Engineering Handbook (Haskins, Forsberg et al. 2008) have
been released as well. The most recent, rationalized to an international systems engineering standard,
serves as the basis for a systems engineering certification program. Currently many aspects of the practice
of systems engineering have become standardized across the industry.

This is not to suggest, however, that this practice is based on an overarching and complete systems
engineering theory. For one thing, standardized practices accumulated from the practical and industrial
side, with programs reusing that which worked on previous programs. Industrial practitioners have also
dominated INCOSE symposia, to the extent that researchers found a need for a focused “Academic
Forum.” Programmatically, incorporation of theoretically-suggested improvements has taken a back seat
compared to reducing cost and complying with process standards, particularly since capability models
became required in the mid-1990s. Those practicing systems engineers who have taken on larger
workloads with the consolidation of the defense and aerospace industry have little time to read up on
recent research. And finally, the dominance of software in new development has led some managers to
turn to software engineers to do the systems engineering, even those who have little to no knowledge of
systems engineering history or best practices. Thus theory has found too little traction in improving
systems engineering practice.

Complex systems theory and systems engineering
Historically, systems engineering theory has consolidated wisdom from a variety of fields. Figure 1

shows a very sketchy view of this history; a wall-sized poster can also be drawn.(Mdd 2006) Systems
theory beginning as early as cybernetics (See Ashby (1956) for a good history), general system theory
(Bertalanffy 1969), and systems thinking, continuing into the 1970s (Checkland 1993), and beyond
(Weinberg 2001). System dynamics, in the form of structured analysis and business analysis, has been
used in systems engineering for several decades.(LaPlante 2004) These have been applied to the evolving
fields of software engineering and systems process discipline.

Theory derived from more recent complex systems sciences has not been explicitly incorporated into
systems engineering standards or into most practice. While studies of fractals (Addison 1997), chaos
(Gleick 1987) and complexity (Waldrop 1992) were enabled by widespread availability of digital
computers beginning in the 1970s, topics such as the numerical modeling of complex adaptive systems
(Miller and Page 2007) and theoretical fields such as nonlinear dynamics and networks have been folded
into systems engineering only much more recently. Since 2000, a recommended new kind of systems
engineering has been identified. This field is variously called Engineering Systems (Moses 2004),
Enterprise Systems Engineering (White 2006) and Complex Systems Engineering (Sheard and Mostashari
2009). “Systems of Systems engineering” is closely related (Office of the Undersecretary of Defense

 3

2008), although that particular guide intentionally only discusses extensions to current systems
engineering practice rather than anything totally new.

Chaos
Theory

Syst. of
Syst. Engi-

neering

General
Systems
Theory

Systems
Dynamics

Systems
Processes

Complex-
ity Theory

Dynamic
Systems

Software
Engineer-

ing

Systems
Thinking

Systems
Engineer-

ing

Soft
Systems

Software
Processes

Complex
Systems

Chaos
Theory

Syst. of
Syst. Engi-

neering

General
Systems
Theory

Systems
Dynamics

Systems
Processes

Complex-
ity Theory

Dynamic
Systems

Software
Engineer-

ing

Systems
Thinking

Systems
Engineer-

ing

Soft
Systems

Software
Processes

Complex
Systems

Figure 1. History of systems fields

This new field is still expressed in terms of broad descriptions of recommended improvements,
rather than a filled-in body of knowledge. “Systems engineering” and “Complex systems” are both very
broad fields. In addition, the intersection of the two fields is not smooth but patchy: a particular principle
connects one small systems engineering task to one specific kind of complex analysis, under specific
conditions. The problem is exacerbated by the fact that today’s standard systems engineering, centered
around system life cycles and standard processes, is but a subset of the early endeavors labeled “systems
engineering.” The broader type documented, for example, in (Hall 1962) addressed not only process but
also systems engineering patterns; environmental research; economic, psychological, and “casuistic”
theories of value; statistical decision making; and even “psychological aspects of synthesis.”

Today’s systems engineering challenges
Many of today’s systems engineering challenges are not technical problems such as those addressed

in engineering education. Murdock (2008) lays out the causes of “DoD’s Systemic Acquisition Failures.”
Acquisition problems include decisions of what to acquire, funding issues, requirements creep, loss of
internal technical competency, and incentive structures; in summary: “The defense acquisition system is
incredibly complex, process-centric and risk-averse.” In MITRE’s Enterprise Systems Engineering
Profiler tool (Stevens 2006), which quantifies program complexity, six of the eight octants have nothing
to do with the technical system; rather they deal with stakeholders, scope, and acquisition context. The
DoD’s recent Guide to Systems Engineering of Systems of Systems (Office of the Undersecretary of
Defense 2008), which shows adaptations of standard systems engineering as it applies to larger and more
complex efforts, notes challenges such as “Coopetition” (development teams of multiple contractors who
also compete against each other), spatially distributed development, and compliance with laws of multiple
nations. These problems fall outside the standard scope of engineering; yet if they are not addressed,
technical solutions will fail.

 4

Most of the specifically technical challenges have been the focus of improved technology efforts for
some time. These include a preponderance of increasingly intricate software, interoperability of systems
that were originally designed to be independent, and evolving systems-of-systems whose inner workings
are continuously exchanged. Contributing to complexity of this improved technology is more compact
hardware (which is more tightly integrated) and the fact that today’s software must be protected from
unknown and increasingly sophisticated threats.

3. Defining complexity in the context of systems engineering
The goal of systems engineering is to create systems that work together and perform their intended

function well in the operational environment. Before the last few decades, engineered systems were
generally stand-alone systems with a single purpose that was usually limited in time and space. Assuming
there was a feasible design in the first place, control of the development process usually sufficed to ensure
the systems were built.

Consequences of recent complexity increases include: (Ameri, Summers et al. 2008)
• Increases in product life cycle costs (costly)
• Difficulty of getting engineering changes made (unmaintainable)
• Difficulty in servicing, leading to many failure modes (unrepairable)
• A complex supply chain, resulting in management and logistical problems (takes so long to

build that it is practically obsolete upon delivery)
• The need for a complex, and therefore costly, design process

Figure 2 shows these as some of the effects of complexity on the right. Characteristics that create
complexity are shown on the left.

Difficult to understand

Takes too long to build

Unrepairable, unmaintainable

Uncontrollable

Costly

Unstable

Unclear cause and effect

Unpredictable

Uncertain
Many pieces

Multi-Scale

Decentralized

Adaptive

Political
(vs. Scientific)

Emergent

Chaotic

Open

Self-Organized

Nonlinear

Tightly coupled

Complexity

Difficult to understand

Takes too long to build

Unrepairable, unmaintainable

Uncontrollable

Costly

Unstable

Unclear cause and effect

Unpredictable

Uncertain

Difficult to understand

Takes too long to build

Unrepairable, unmaintainable

Uncontrollable

Costly

Unstable

Unclear cause and effect

Unpredictable

Uncertain
Many pieces

Multi-Scale

Decentralized

Adaptive

Political
(vs. Scientific)

Emergent

Chaotic

Open

Self-Organized

Nonlinear

Tightly coupled

Many pieces

Multi-Scale

Decentralized

Adaptive

Political
(vs. Scientific)

Emergent

Chaotic

Open

Self-Organized

Nonlinear

Tightly coupled

Complexity

Figure 2. Contributors to and Effects of Complexity

Establishing a practice of improved systems engineering for the future will require addressing
complexity explicitly. Systems engineers need to know “when a systems problem, and/or its solution, is
complex; how complex it is (in relation to other systems, as a minimum); [and] how to manage the
complexity to permit us to answer...questions such as: ‘When have we done enough? Is our confidence at
an acceptable level?’ ”(Calvano and John 2004) Systems engineers will need to understand what
complexity is and how to measure it. Summarized definitions from the literature are therefore provided in
this section. The literature reviewed came both from the complex systems sciences and from systems
engineering.

 5

Things and Relationships
Systems engineering generally talks about “elements” and “interfaces”. This dual concept of “things”

and “relationships among the things” is common across many fields, although the vocabulary varies from
field to field, as suggested by the terms in Table 1. No difference has been found between describing a
system as consisting of “nodes” and “links” and describing it as having “entities” and “relationships,” so
for the purpose of this paper, all the terms in a column of Table 1 are considered equivalent.

Table 1. Equivalent Things and Relationships
Thing Relationship Source Field

Elements, components,
systems, or subsystems

Interfaces Systems engineering

Stocks Flows Systems dynamics
Nodes Links Network science

Vertices Edges Cyclomatic complexity
Modules Messages Software development
Entities Relationships Systems analysis
People Connections Social networking
Tasks Dependencies Project management, PERT

Process activities Sequence of
activities

Process engineering

Literature Overview and discussion: Complexity types
Sheard and Mostashari (2009) discuss the literature in detail, showing how the concepts addressed by

Sussman (2000), Bolton (2007), Moses (2002; 2004), Bar-Yam (1997), Miller and Page (2007), Rouse
(2007), Calvano and John (2004), Holland (1995), and Mostashari and Sussman (2009) correspond to the
framework here. It is shown that the six types and subtypes of complexity (Table 2) adequately address
most of the types in the literature, given that artifact and development process complexities have some
differences.

The exception (those concepts from literature that are not well addressed by the typology) can be
summarized as follows:

• Theoretical and mathematical complexity, as opposed to experiential and tangible complexity
• Causes and effects of various types of nonlinearity and emergence
• Environmental complexity, and a full set of subtypes of sociopolitical complexity (nested and

evaluative subtypes are mentioned above)
• Risk, concerns and worries
• Uncertainty and measurement noise.

The concepts in the first bullet are only excluded from the typology to the extent that they are so
theoretical as to be not usable on real programs (the types structural:size and structural:connectivity do
address much in these concepts). Causes and effects of nonlinearity and emergence are interesting and
possibly useful, but are not related to how complexity is measured, which is the focus of this work. Socio-
political complexity deserves its own treatment, most likely in collaboration with sociologists. For now it
is recognized that this type is poorly defined. Risks, concerns, worries, and uncertainty are more effects
than types of complexity. Measurement noise is addressed briefly below.

 6

4. Framework of types of complexity
Figure 3 shows how the various types of complexity interrelate. Green items (dashed border) are

items whose complexity is at issue: systems (artifacts), the processes used to develop them, and the
environment. Both systems and development processes exhibit both structural and dynamic complexity.
Structural complexity (orange, dotted border) has three subtypes, described in more detail below Table 2.
Dynamic complexity (pink, solid border) is split into short- and long-term. Socio-political complexity
(blue, dot-dash border) applies primarily to the environment and development processes rather than to
things, although this also plays a role in the function of the system itself, particularly in systems-of-
systems.

have

have

created
via

Structural
complexity

Dynamic
complexity:
long term

5

Structural
complexity: Size1

Dynamic
complexity

Development
processes

Socio-
political

complexity
6

Dynamic
complexity:
short term

4

2

Things (systems,
products, things

being engineered)

Environment

supports

contains 3

subtypes

subtypes

have

has

Structural complexity:
Connectivity

Structural complexity:
Architecture

have

have

created
via

Structural
complexity

Dynamic
complexity:
long term

5

Structural
complexity: Size1

Dynamic
complexity

Development
processes

Socio-
political

complexity
6

Dynamic
complexity:
short term

4

2

Things (systems,
products, things

being engineered)

Environment

supports

contains 3

subtypes

subtypes

have

has

Structural complexity:
Connectivity

Structural complexity:
Architecture

Figure 3. Relationship of complexity types

 Table 2 lists these six types of complexity, including examples, why the factor contributes to

complexity, and what kinds of problems can occur if a system (or, with a dash preceding it, a
development process) has such complexity. Each type of complexity (row in the table) is discussed in
more detail below the table.

Table 2. Framework of Types of Complexity
Type Subtype Example Why complex? Problem if have it
1
Structural
complexity

Size (# elements, #
instances, # types of
elements)
-of development
process

People, groups, units,
computer nodes

-SE tasks

Many items are harder to
track. (Some consider
this “complicated” not
complex)

Long list of elements,
some won’t be on
time
- Costly to staff all
tasks

 7

Type Subtype Example Why complex? Problem if have it
2
Structural
complexity

Connectivity (#
connections, types,
strength of
connections)
-of development
process

Number or density of
connections, varieties
(data/control/physical),
(strong/medium/weak/
none)
“Static emergence”
-dependency links

Everything connects to
everything else. Diffi-
culty decomposing and
isolating causes/effects.
Determines network
connectivity, path length,
feedback loops

Emergent properties
Cascading failures.
Difficult to observe,
describe, control,
predict breakage
-Program may not
converge

3
Structural
complexity

Architecture
(Patterns, chunk-
iness of connections,
inhomogeneity,
boundaries)

Trees, layers, networks,
teams
Chunks, fragmentation,
“non-holonomic
constraints”

Chunks of order have
different properties from
other chunks or from the
stew of complexity

Different patterns
have different
failures or strengths.
Averaging across
different types gives
incorrect conclusions

4
Dynamic
complexity

Short term (sudden
rapid change in
system behavior)
-development
system behavior

Homeostasis, Time
patterns, Feedback.
-Execution of develop-
ment system (building
of the product) is inher-
ently dynamic

Difficult to predict, con-
trol, understand, commu-
nicate. Rapid problem
exacerbation, oscillation
due to time delays.
-tasks may be out of
sequence

Things can change
suddenly and
unpredictably. Hard
to estimate. Typical
linear and gaussian-
based assumptions
fail.

5
Dynamic
complexity

Long term (changes
in # and types of
things and
relationships)

Origin of complex sys-
tems, growth, evolution
to a new system, self-
organization, adapta-
tion, learning, co-evolu-
tion causing changes in
fitness landscape.

Evolution is long-term
emergence. Almost
impossible to predict
how a system will
evolve. Learning
changes short-term and
long-term behavior.

Adaptation is hard to
predict. Difficult to
engineer system
qualities (“ilities”) at
end of life because
both system and
context change

6
Socio-
political
complexity

Social and Political
(Human cognitive
limitations , multiple
stakeholders, global
context, environ-
mental sustain-
ability, economics)
-“Coopetition,”
supplier chain depth,
distributed
development

Objectives multiple,
soft, value-laden.
Multiple perspectives,
multiple approvals
required. Pluralism.
Sociological aspects of
teams and
organizations,
Diverse operational
environments, diffuse
boundaries

Individuals ambivalent
and change their desires
over time. Team
dynamics and
organizational dynamics
can scuttle technical
concerns. Politics can
determine whether a
system is built at all.
Policies are resisted.

Goals change,
acceptability of
developed system
changes, system
requirements change,
funding is cut, system
may not be
developable in time
required.

Row 1 (Structural complexity: Size) groups all considerations about number of elements (nodes).
How many nodes are there? How many types of nodes are there? How many instances total? The more
nodes there are, the greater the amount of resources required to understand and manage a system, but
greater numbers do not in themselves require a qualitatively different kind of management. Some
consider the number of types of elements to be the only really complex part of Type 1, while others
(Stevens 2009) consider this “diversity” rather than true complexity; in any case, no discussion of
complexity can omit size altogether.

Row 2 (Structural complexity: Connectivity) includes all considerations having to do with number
or types of connections (links, relationships, etc.). Note that number and density are essentially the same
quantity, density being just the number divided by the maximum possible number of connections (which
is (n)(n-1)/2 for bidirectional connections, considering only connections between two elements). Types of
connections differ from representation to representation (Ameri, Summers et al. 2008) and include (for

 8

example) signal, energy, and material in a “function structure” representation, and up to eight types for a
“parametric associativity graph.”

Combined with number of nodes (Structural complexity: Size), connectivity determines many
network properties, including average network path length, degree centrality, group cohesion, and
robustness to failure (Cross and Parker 2004). McCabe (1976) showed that the number of vertices (nodes)
and links (edges) was sufficient to calculate the number of fundamental loops in a single software
program.

When the issue is complexity of the development process, nodes are the tasks and connections are
dependency links among them, including feedback that causes revisiting of a previous task due to outputs
of a current task. If the connectivity is high enough, so much feedback can happen that the program may
not converge at all (Mihm and Loch 2006).

Generally, emergent properties arise when connectivity gets high. Therefore emergence that is not
explicitly time-dependent is included in this type. Dense networks (high connectivity) also make a system
hard to decompose.

Connectivity may also include considerations of varying strengths of connections, whether simple
bins of “weak, medium, or strong” or continuous variations in neuron-neuron strength as the basis for
memory in artificial neural networks (Stergiou and Siganos 1996), for example.

Row 3 (Structural complexity: Architecture) was necessary to deal with issues such as
architectural patterns (tree, layers, teams, etc.) and concepts of boundaries and “chunkiness” (e.g. islands
of order within a complex or chaotic background). These imply a certain level of connectivity, but the
concept is different because connectivity refers to a total or average number, while architecture
specifically looks at inhomogeneity. This type of complexity arises from things not being the same across
their expanse, including the effect of distinct spatial areas on populations that grow in an environment
(Sayama, Kaufman et al. 2000) and boundary issues. “Texture” is a slightly broader term than “chunki-
ness” and may apply if the chunks get small enough.

Row 4 (Dynamic complexity: short term) is one of two types of dynamic complexity. Dynamics
occur at all time scales, but in general there are two different kinds of effects. One effect is seen at an
operational time scale, best exemplified by the concern that in high complexity systems, negative events
may grow quickly, surprising operators and requiring emergency measures. Whether considered a
nonlinear or “butterfly” effect, or analyzed in terms of feedback, homeostasis, and Gaussian distribution
“outliers,” these effects are difficult to understand, predict, control, or prevent.

It should be noted that development processes are inherently dynamic (in contrast to artifacts, which
have at least some static properties). A development process by nature implies beginning with early steps,
completing them, and over time progressing through the remaining steps.

Row 5 (Dynamic complexity: long term) addresses the longer time scale, the time scale over which
systems evolve as the agents adapt, or perhaps die and are replaced by another generation (as a minimum;
the time scale can also be much longer than a single generation). Complexity arising from the growth of
complex systems, self-organization, or learning is considered long-term, as are many concepts related to
the fitness landscape changing (although that can also occur on an operational time scale, particularly in
war-like situations).

Row 6 (Socio-political complexity) is acknowledged as covering too much. Into this “type” has
been squeezed anything having to do with humans, from cognitive limitations that prevent designers from
being able to consider much more than 7 plus or minus 2 items at once, to sociological phenomena such
as fads and marketing, to fields of economics, environmental sustainability, and politics. These are
grouped together primarily because most engineers have neither education nor aptitude to deal with them.
Ideally, systems engineers can bring specialists in these fields onto programs at appropriate points, but

 9

this ideal is not often enacted. This type has not been divided into sub-types, partly because differences
among these fields are not evident to many engineers.

Socio-political complexity includes concepts of multiple stakeholders, viewpoints, and views; of
soft, value-laden, and conflicting objectives; of pluralism (the social counterpart to “chunkiness”);
management science and principles of teams; and competition among suppliers in the contractor
marketplace. This latter mostly applies when considering the complexity of the development process
rather than that of a product or artifact, but in fact this whole category is more about process than
artifacts.

5. What is systems engineering measurement?
Systems engineering measurement was performed long before the discipline of systems engineering

coalesced, as documented, for example, in standards and capability models in the 1990s (Sheard 2001).
Individual programs measured progress using earned value and other project management techniques
(Rosenau 1981) beginning in the 1960s or 1970s. From the earliest time in the modern era of systems
engineering, programs tracked key technical parameters, a skill crystallized into Technical Performance
Measurement, which was described in a 1974 Military Standard (U.S. Department of Defense 1974).

Improved and more broadly-accepted systems engineering measurement information came from four
different directions, as follows:

• INCOSE, and in particular its Measurement working group, published a technical measurement
guidebook (Roedler and Jones 2005) that refined and expanded an earlier Measurement primer
(Measurement Working Group 1998).

• Practical Software Measurement (McGarry 2002) began as a software-only collection of common
program issues and suggestions for their measurement. PSM’s well-connected authors brought
the same ideas into the CMMI (Chrissis, Konrad et al. 2003) and into international measurement
standards (ISO/IEC 2007). Beginning in 2004, PSM explicitly added systems engineering. PSM
has a well-developed method, process, lexicon, set of templates, examples, and recommended
measures.

• USC’s Center for Software and Systems Engineering developed first the CoCoMo (Constructive
Cost Model) cost estimation model for software (USC Center for Software and Systems
Engineering 2002) and then in 2006, a similar model for estimation of systems properties called
COSYSMO (Valerdi 2006). These provide an industry-wide set of cost-drivers, and a baseline
calculation capability that can be tailored to a particular organization.

• Leading Indicators. A 2007 report called Systems Engineering Leading Indicators (Roedler and
Rhodes 2007) involved cooperation among most of the groups represented above. A complexity
measure was one of the most requested additions for the 2009 update presently in work, but will
probably not appear due to inability to capture all the different requested ideas in one measure
(Sheard and Mostashari 2009).

6. Complexity measurement related to systems engineering
None of the INCOSE systems engineering measurement documentation addresses complexity. Sosa,

Browning and Mihm (2007) have investigated software systems complexity and its relationship to
architecture. While very promising, the concepts only apply to actual coded software, are not applicable
to larger systems, and are not available early enough in the program to be considered “leading.” PSM
includes “cyclomatic complexity” (McCabe 1976). While this has been important in the software com-
munity, this does not translate easily to systems engineering. Only COSYSMO from USC addresses
complexity, via the driver “architecture complexity”, but this is estimated by experts, not calculated.

 10

Architecture Complexity: The relative difficulty of determining and managing the system
architecture in terms of IP platforms, standards, components (COTS/GOTS/NDI/new), connec-
tors (protocols), and constraints. This includes systems analysis, tradeoff analysis, modeling,
simulation, case studies, etc. (Boehm, Riefer et al. 2003)

At this time there is not a standard, frequently-used measure of complexity that is applied to systems
engineering, and there is significant interest in such a measure (Sheard and Mostashari 2009; Roedler and
Rhodes 2010).

The goal of systems engineering complexity measurement would be first, to be able to track changes
in the complexity of a given system over time, and potentially second, to be able to compare the
complexity of two different systems. Table 3 shows the types and sub-types of complexity from Table 2,
followed by potential measures that could be used to evaluate the complexity of an artifact or
development process according to that type of complexity. These basic measures could then be combined
into a complexity indicator as shown in Roedler and Rhodes (2007) for other systems engineering
measures. These are preliminary ideas that need significant study before implementing.

Table 3. Possible Measures of Various Types of Complexity
Type Subtype Possible measures
1 Structural
complexity

Size (# elements, instances, #
types elements)
-of development process

items (instances)
types of unique items
development tasks

2 Structural
complexity

Connectivity (# connections,
types, strengths),
-of development process

connections, density of connections (binned by
strength?)
loops or threads per McCabe software complexity.

3 Structural
complexity

Architecture (Patterns,
chunkiness of connections,
boundaries)

Measures similar to texture measures, such as size
distribution function (Moskowitz and Jacobs 1975);
(Kaye, Junkala et al. 1998) or Boundary fractal dimension
(Wettimuny and Penumadu 2003)

4 Dynamic
complexity

Short term (Nonlinearity,
dynamic emergence, sudden rapid
change in system behavior—
butterfly effect)
-development system behavior

In a system dynamics or agent-based model, predict
characteristics of changes such as frequency and size (or
consequence), and derive “change exposure” measures?
- # Paths, deviations from waterfall, dependencies?
PERT C measures

5 Dynamic
complexity

Long term (changes in # and
types of things and relationships)

ESE Profiler tool results
Possibly: measures of resilience

6 Socio-
political
complexity

Social and Political (Cognitive
limits, multiple stakeholders,
global context, environmental
sustainability, economics)
-“Coop-etition,” supplier chain
depth, distributed development

ESE Profiler, sociological measures of group and
organizational coherence, team measures, political
measures such as size of constituency.
Scale of effort in terms of number of users and user types.

These measures are all hypothetical, and very few relate to the practical measures documented in

(PSM 2007). Many questions would have to be resolved, including those brought up by Ameri, Summers
et al. (2008) such as whether the measure relates to the model of the product (the product representation)
or to the product itself. Clearly models are easier to use theoretically, but if different models of the same
product would give different measures, it is not clear that such measures would be useful to systems
engineers or managers.

The Systems Engineering Leading Indicators revision project has been asked to propose a practical
Complexity indicator for systems and/or programs (Roedler and Rhodes 2010). The requests were
grouped together because they all mentioned “complexity,” but some ask about size of the product while
others refer to number of teammates or the risk of not meeting the development schedule.

 11

Because of this lack of clarity it is not prudent at this time to recommend a composite measure that
rolls up all six of these types into one number. It is unknown which of the six types is most likely to lead
to problems, in general or for any specific system. Different systems will likely have different mixes of
complexity, and a single number that was 95% social complexity might have very different implications
to a program than a single number that was 95% short-term dynamic complexity. There would also be
little credibility to any algorithm that would suggest how to combine the six types. Most likely the initial
work on these complexity measurements will need to capture aspects of all six types and study
correlations to see what aspects do lead to problems and what aspects are more benign.

However, once a candidate measure is proposed, it will likely be well-tested in the field, since there
is great interest in being able to determine the level of complexity on a program. This is a fertile area for
research, which is expected to provide data about the difficulty of making theoretical work usable on real
programs.

7. Conclusion
This paper has reviewed the literature on complexity, as related to complex systems and to systems

engineering. Table 2 proposes a framework of complexity types that includes three types of structural
complexity (size, connectivity, and architecture), two types of dynamic complexity (short-term and long-
term), and socio-political complexity. For each of these types, the complexity of the development process
is discussed separately from the complexity of artifacts, if appropriate. The paper shows that these six
types address nearly all of the types of complexity mentioned in the reviewed literature.

The recent history of systems engineering measurement features a growing body of work starting
with a definition of the measurement process, growing to an industry-wide database of cost drivers, and
including, in the more recent documents, suggested leading indicators and measurement and indicator
templates. To continue improving measurement of systems engineering toward a solid complexity
measure, a number of potential measurements are discussed that relate to the six types of complexity.
Because such theoretically based measurements are so different from the practical measures in use across
the industry, it is premature at this time to define a composite complexity measurement.

Future work is proposed that will fill in holes in the understanding and definition of various aspects
of complexity as they relate to systems engineering.

8. References
Addison, P. S. (1997). Fractals and chaos: an illustrated course
Ameri, F., J. D. Summers, et al. (2008). "Engineering design complexity: an investigation of methods and

measures."

. Philadelphia, PA, Institute of Physics Publishing.

Res Eng. Design
Ashby, W. R. (1956).

19: 161-170.
Introduction to Cybernetics

Bar-Yam, Y. (1997).
Chapman & Hall.

Dynamics of Complex Systems
Bertalanffy, L. v. (1969).

. Cambridge, Massachusetts, Westview Press.
General system theory; foundations, development, applications

Boehm, B. W., D. J. Riefer, et al. (2003). COSYSMO, A Systems Engineering Cost Model.
. New York,, G. Braziller.

International Council
on Systems Engineering

Bolton, D. P. W. (2007). Some Thoughts on Systems Engineering, Engineering Systems & Complexity
. Crystal City, Virginia, INCOSE.

Symposium on Complex Systems Engineering
Calvano, C. N. and P. John (2004). "Systems engineering in an age of complexity."

. Santa Monica CA.
Syst. Eng.

Checkland, P. (1993).
7(1): 25-34.

Systems Thinking, Systems Practice
Chrissis, M. B., M. Konrad, et al. (2003).

. Chichester, West Sussex, England, John Wiley & Sons.
CMMI: Guidelines for Process Integration and Product Improvement

Cross, R. and A. Parker (2004).

.
Boston, Addison-Wesley.

The Hidden Power of Social Networks: Understanding how work really gets done
in organizations

Friedman, G. J. (1994). "Systems Engineering's Crucial Juncture."
. Boston, Massachusetts, Harvard Business School Press.

The Journal of the National Council on Systems
Engineering

Gleick, J. (1987).
 1(1): 1-6.
Chaos: Making a New Science. New York, Penguin Books.

 12

Hall, A. D. (1962). A Methodology for Systems Engineering
Haskins, C., K. Forsberg, et al., Eds. (2008).

, Van Nostrand Reinhold.
Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities, v 3.1
Holland, J. H. (1995).

, International Council on Systems Engineering
Hidden Order: How Adaptation Builds Complexity

Hughes, T. P. (1998).

. Cambridge, Massachusetts, Perseus
Books.

Rescuing Prometheus
ISO/IEC (2007). ISO/IEC 15939:2008E Systems and software engineering -- Measurement process. Switzerland.

. New York, Pantheon Books.

Kaye, B. H., J. Junkala, et al. (1998). "Domain Plotting as a Technique for Summarizing Fineparticle Shape,
Texture and Size Information." Particle and Particle Systems Characterization

LaPlante, P. A. (2004).
 15(4): 180-190.

Real-time systems design and analysis
McCabe, T. J. (1976). "A Complexity Measure."

. Hoboken NJ, IEEE Press Wiley-Interscience.
IEEE Transactions on Software Engineering

McGarry, J. (2002).
SE-2(4): 308-320.

Practical software measurement: objective information for decision makers

Mdd (2006). "User:MDD/History of systems theory." Retrieved April 1, 2010, 2010, from
http://en.wikipedia.org/wiki/User:Mdd/History_of_systems_theory.

. Boston, MA,
Addison-Wesley.

Measurement Working Group (1998). Systems Engineering Measurement Primer. Seattle WA, INCOSE, the
International Council on Systems Engineering.

Mihm, J. and C. H. Loch (2006). Spiraling out of control: problem-solving dynamics in complex distributed
engineering projects. Complex Engineered Systems: Science Meets Technology

Miller, J. H. and S. E. Page (2007).

. D. Braha, A. A. Minai and Y.
Bar-Yam. Cambridge, Massachusetts, Springer: 384.

Complex adaptive systems: An introduction to computational models of social
life

Moses, J. (2002). The Anatomy of Large-Scale Systems.
. Princeton, NJ, Princeton University Press.

ESD Internal Symposium

Moses, J. (2004). Foundational Issues in Engineering Systems: A Framing Paper.

, Massachusetts Institute of
Technology Engineering Systems Division.

Engineering Systems Monograph

Moskowitz, H. R. and B. E. Jacobs (1975). "The texture profile: its foundation and outlook."

,
MIT esd.

J. Texture Stud.

Mostashari, A. and J. M. Sussman (2009). "A Framework for Analysis, Design, and Management of Complex,
Large-Scale, Interconnected, Open Sociotechnological Systems."

 1(6):
157.

International Journal for Decision Support
Systems and Technologies

Murdock, C. A. (2008). Assessing DOD's Systemic Acquisition Failures. Washington, DC., Center for Strategic &
International Studies: 8.

 1(2): 52-68.

Office of the Undersecretary of Defense (2008). Systems Engineering Guide for Systems of Systems Version 1.0.
Washington DC, Office of the Undersecretary of Defense (A,T and L), Systems and Software Engineering,.

PSM (2007). Practical Software & Systems Measurement: Objective Information for Decision Makers
Roedler, G. J. and C. Jones (2005). Technical Measurement. INCOSE. Seattle, WA, INCOSE. INCOSE-TP-2003-

020-01.

.

Roedler, G. J. and D. H. Rhodes (2007). Systems Engineering Leading Indicators Guide. Seattle WA.
Roedler, G. J. and D. H. Rhodes (2010). System Engineering Leading Indicators. Cambridge MA, Lean Aerospace

Initiative.
Rosenau, M. D. (1981). Successful project management: a step-by-step approach with practical examples

Rouse, W. B. (2007). Complex Engineered, Organizational & Natural Systems: Issues Underlying the Complexity
of Systems and Fundamental Research Needed to Address These Issues. Washington DC, Engineering
Directorate, National Science Foundation: 31.

. Belmont,
Calif., Lifetime Learning Publications.

Sayama, H., L. Kaufman, et al. (2000). The role of spontaneous pattern formation in the creation and maintenance
of biological diversity. International Conference on Complex Systems

Schwager, R. (1998). "History of the Enigma Machine." Retrieved April 1, 2010, 2010.

. Y. Bar-Yam. Nashua New Hampshire,
NECSI: 8.

Sheard, S. A. (2001). Evolution of the frameworks quagmire. Computer
Sheard, S. A. and D. J. G. Lake (1998). Systems Engineering Standards and Models Compared.

, IEEE. 34: 96-98.
Eight Annual

International Symposium of the International Council on Systems Engineering

Sheard, S. A. and A. Mostashari (2009). "A Complexity Typology for Systems Engineering."

. Vancouver, British Columbia,
Canada, INCOSE: 589-596.

Syst. Eng.
(Submitted).

 13

Sheard, S. A. and A. Mostashari (2009). "Principles of complex systems for systems engineering." Systems
Engineering

Sosa, M. E., T. R. Browning, et al. (2007). Studying the Dynamics of the Architecture of Software Products.
 12(4).

ASME
2007 International Design Engineering Technical Conferences

Stergiou, C. and D. Siganos (1996). "Neural Networks."
. Las Vegas NV.

Neural Engineering
Stevens, R. (2006). Engineering Enterprise Systems: Challenges and Prospects McLean VA, The MITRE

Corporation: 19.

 4(11).

Stevens, R. (2009). Origin of ESE profiler. S. A. Sheard. McLean VA.
Suh, N. P. (2005). Complexity : theory and applications
Sussman, J. M. (2000). Ideas on Complexity in Systems--Twenty Views. M.I.T.

. New York, Oxford University Press.

U.S. Department of Defense (1974). MIL-STD-499A Engineering Management Washington DC, Department of
Defense.

United States Government Accountability Office (2008). Defense Acquisitions: Assessments of Selected Weapon
Programs. G. A. Office. Washington DC.

USC Center for Software and Systems Engineering (2002, 9/23/2002). "COCOMO, Constructive Cost Model."
Retrieved May 9, 2009, from http://sunset.usc.edu/cse/pub/research/COCOMOII/cocomo_main.html.

Valerdi, R. (2006, 12/6/2006). "Welcome to the home of COSYSMO." from http://valerdi.com/cosysmo/.
Waldrop, M. M. (1992). Complexity: the emerging science at the edge of order and chaos

Weinberg, G. M. (2001).

. New York, Simon &
Schuster.

An introduction to general systems thinking / Gerald M. Weinberg

Wettimuny, R. and D. Penumadu (2003). "Automated Digital Image Based Measurement of Boundary Fractal
Dimension for Complex Nanoparticles."

. New York, Dorset
House.

Particle & Particle Systems Characterization
White, B. E. (2006).

 20(1): 18-24.
On the Pursuit of Enterprise Systems Engineering Ideas

. Bedford, MA, The MITRE
Corporation.

	1. Introduction
	2. Systems engineering and complex systems science
	Historical systems engineering
	Complex systems theory and systems engineering
	Today’s systems engineering challenges

	3. Defining complexity in the context of systems engineering
	Things and Relationships
	Literature Overview and discussion: Complexity types

	4. Framework of types of complexity
	Short term (sudden rapid change in system behavior)
	Social and Political

	5. What is systems engineering measurement?
	6. Complexity measurement related to systems engineering
	Short term (Nonlinearity, dynamic emergence, sudden rapid change in system behavior—butterfly effect)
	Social and Political (Cognitive limits, multiple stakeholders, global context, environmental sustainability, economics)

	7. Conclusion
	8. References

	Prev:
	Next:
	Close:
	First:

